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Abstract 

Background: Posttraumatic stress disorder (PTSD) is accompanied by disrupted cortical 

neuroanatomy. We investigated alteration in covariance of structural networks associated with 

PTSD in regions that demonstrate the case-control differences in cortical thickness (CT) and 

surface area (SA).  

Methods: Neuroimaging and clinical data were aggregated from 29 research sites in >1,300 

PTSD cases and >2,000 trauma-exposed controls (age 6.2-85.2 years) by the ENIGMA-PGC 

PTSD working group. Cortical regions in the network were rank-ordered by effect size of PTSD-

related cortical differences in CT and SA. The top-n (n = 2 to 148) regions with the largest effect 

size for PTSD > non-PTSD formed hypertrophic networks, the largest effect size for PTSD < 

non-PTSD formed atrophic networks, and the smallest effect size of between-group differences 

formed stable networks. The mean structural covariance (SC) of a given n-region network was 

the average of all positive pairwise correlations and was compared to the mean SC of 5,000 

randomly generated n-region networks.  

Results: Patients with PTSD, relative to non-PTSD controls, exhibited lower mean SC in CT-

based and SA-based atrophic networks. Comorbid depression, sex and age modulated 

covariance differences of PTSD-related structural networks.  

Conclusions: Covariance of structural networks based on CT and cortical SA are affected by 

PTSD and further modulated by comorbid depression, sex, and age. The structural covariance 

networks that are perturbed in PTSD comport with converging evidence from resting state 

functional connectivity networks and networks impacted by inflammatory processes, and stress 

hormones in PTSD. 
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Introduction 

Posttraumatic stress disorder (PTSD) is a psychiatric condition that develops in vulnerable 

individuals after experiencing or witnessing a life-threatening event (1). PTSD-related changes 

in cortical thickness (CT) (2-5) and surface area (SA) (6, 7) are found in specific cortical regions. 

However, relatively little is known about how PTSD affects coordinated patterns of CT and SA 

differences among affected cortical regions. We sought to examine PTSD effects on networks 

made up of cortical regions that have the greatest and the least between-group differences in 

CT and SA. Identifying such networks may lend support for one or more etiopathologic models 

of PTSD.  

Structural covariance (SC) refers to the phenomenon of covarying structural brain imaging 

measures between cortical regions and across individuals. This covariance may be instantiated 

as a structural covariance network (SCN). Structural covariance network measures are shown 

to be concordant with tract-based white matter connectivity, synchronous neuronal activity (e.g. 

functional connectivity) (8, 9), and spatial patterns of gene transcription, each of which lend 

biological support to SCNs (10). SCNs may index mutually trophic factors between regions that 

covary over the course of neurodevelopment (9). Differences in SC are associated with a variety 

of neuropsychiatric disorders including PTSD (11-13), schizophrenia, autism, obsessive 

compulsive disorder (14, 15), and even trauma exposure (16).  

Our investigation of structural networks with significantly different covariance was motivated by 

two complementary models for understanding PTSD. (I) There is converging evidence that 

neurobiological mechanisms drive concerted patterns (covariance) of atrophy or hypertrophy 

across selected brain regions. There is generally more evidence supporting a role for CT-

derived networks than SA-derived networks. Concerted processes operative in healthy 
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neurobiological states are perturbed by disease to effect patterns of network atrophy or 

hypertrophy. These neurobiological perturbations may manifest as changes in network 

covariance. Neurobiologically deleterious processes in PTSD may instigate atrophy in a 

coordinated manner across many regions to reveal atrophic networks. Deleterious processes in 

PTSD include chronic alteration of stress hormone levels such as cortisol and norepinephrine 

(17, 18), epigenetics mechanisms such as methylation (19, 20), inflammatory processes such 

as oxidative stress (21) and cytokines (22), and accelerated aging through the combined effect 

of these and other processes (23). (II) Alternatively, between-group differences in network SC 

may support one or the other prevailing neural systems models of PTSD. For instance, a 

dominant model of PTSD is that fear learning systems go awry in the aftermath of trauma. 

Behaviorally, slow or incomplete fear extinction and rapid fear-reinstatement contribute to 

symptoms of PTSD. Effective fear learning is dependent on the healthy function of underlying 

brain networks. Functional connectivity networks have been found to be congruent with 

structural covariance networks (24, 25). Thus, between-group differences in structural networks 

may simply reflect the between-group differences in functional networks, and these differences 

pervade networks (structural and functional) involved in fear learning behavior. It is also 

possible we might find hypertrophy across different networks that mediate compensatory 

responses to disrupted fear learning. 

 

Wannan and colleagues (26) pioneered an innovative method to investigate the mean SC of 

networks constituted from regions selected by rank-ordering regions most affected by the illness 

of interest. This method considers only the most highly ranked regions in forming networks 

rather than all regions as in previous SCN analyses. Their findings in schizophrenia, suggest 

that some cortical networks connecting diverse regions may propagate cortical features from 

one region to another, leading to distributed cortical remodeling (9). Our approach, which 

modified their method, considered 3 classes of networks. (I) regions most affected by virtue of 
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lower CT in PTSD formed so-called atrophic networks. (II) Regions most affected by virtue of 

higher CT in PTSD formed so-called hypertrophic networks. (III) Regions least affected by 

PTSD formed stable networks. Rank-ordering of regions was based on the effect size of 

between group differences in CT or SA. The threshold for considering effect sizes (top-n) was 

initially set to the 2-most affected regions, and was repeated for networks of up to 148 regions 

(top-n = 2, 3, 4, . . .148). Thus, networks ranging in size from 2 to 148 regions, in increments of 

1 region, were tested. The SC of a network was calculated as the average effect size of the 

regions under consideration.  

Importantly, even in the absence of statistically significant group-differences for individual 

cortical regions, significant group differences in covariance were detected in networks consisting 

of regions with the greatest between-group differences. We examined both CT-based and SA-

based networks because CT and SA index distinct features of neuronal organization (27-29). 

This approach enhanced sensitivity to cortical morphometry and network covariance differences 

associated with PTSD, given that CT- and SA-based networks may reflect different interactions 

between regions or distinct aspects of the same interaction between regions (30, 31). Cortical 

volume was not examined as it is readily derived from mean CT and SA by simple multiplication 

of these two terms. However, CT and SA possess different biological, developmental, and 

genetic determinants as we discuss later. 

We hypothesized that the mean covariance of n-region networks would be higher than the mean 

covariance of randomly selected n-region networks in both PTSD and trauma-exposed control 

groups. Confirmation of this hypothesis would tell us that networks constituted from selected 

(top-n) regions are more structurally interconnected than networks of the same size composed 

of randomly selected regions. We further hypothesized that mean SC would be modulated by 

PTSD diagnosis, as well as by PTSD and comorbid depression, given the two disorders are 
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highly comorbid (32). We predicted greater impact of PTSD on SA-based networks than on CT-

based networks because SA generally drives performance more directly for a variety of 

cognitive and affective processes (33, 34). We also know that SA has an outsized role 

compared to CT in various neurobiological, neurodevelopmental, and neurogenetic processes. 

We predicted, because stable networks are made of regions that are least affected by PTSD, 

their covariance might be stronger than in non-PTSD since these networks of the least affected 

regions might compensate for disrupted networks composed of highly affected regions. We 

posited that because atrophic networks are made of regions most diminished by illness, the 

disease process would not necessarily affect all network regions in a systematic way, effectively 

lowering covariance. By contrast, we predicted that trauma-exposed non-PTSD subjects might 

be protected from developing symptoms because their atrophic networks maintained their 

healthy level of covariance. If hypertrophic networks result from higher-than-normal levels of 

trophic factors, whereas atrophic networks result from lower-than-normal levels of trophic 

factors, then we might reason that atrophic networks and hypertrophic networks would 

experience the same perturbations. However, given evidence that stress hormones and 

inflammatory processes play a role in regional atrophy but a lack of evidence for a role in 

regional hypertrophic, we predicted that hypertrophic networks would demonstrate different 

outcomes in relation to PTSD than atrophic networks. Specifically, we hypothesized that 

atrophic networks, unlike hypertrophic networks, would play a central role in modulating the 

effects of PTSD. Finally, we explored interaction effects of sex, age, and depression on PTSD.  
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Methods 

Participants 

All data, aggregated by the PGC-ENIGMA PTSD Working Group, was shared by 29 sites 

located in five countries (N = 3,438 for CT, and 3,436 for SA). Demographic and clinical 

information are summarized in Table 1. Only participants with clear information of PTSD 

diagnosis and sex were included in the following analyses (PTSD/Non-PTSD N = 1,344/2,073 

for CT, and 1,348/2,066 for SA). The specific psychometric instruments and MRI acquisition 

parameters used at each study site are listed in Supplementary Tables S1 and S2, 

respectively. Detailed information of clinical measurements please see Supplementary 

Methods. All study sites obtained approval from local institutional review boards or ethics 

committees. All participants provided written informed consent.  

Imaging Data Preprocessing 

Details of imaging data preprocessing please see Supplementary Methods. 

Harmonizing Data Across Sites  

ComBat was utilized to harmonize CT and SA values by removing the effects of study sites 

while preserving inherent biological associations in the data (35). More details please see 

Supplementary Methods.  

Adjusting for Confounding Factors  
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Age, age2, sex, and mean whole-brain CT (or SA) estimates were regressed from the CT (or SA) 

estimates with a linear model (36). The age2 term adjusted for possible nonlinear effects of age 

on CT (or SA). The mean whole-brain CT (or SA) estimate was included as a regressor to 

adjust for globally higher CT (or SA) estimates to reflect larger regional CT (or SA) estimates. 

More details please see Supplementary Methods. 

Top-n Regions SC Analyses 

The pipeline for the top-n regions SC analysis is shown in Fig. 1A. The top-n regions SC 

analysis was limited to networks consisting of the top-n (n = 2 to 148) cortical regions that were 

selected by rank-ordering PTSD-related changes in CT or SA by Cohen’s d effect sizes (Fig. 2 

and Supplementary Tables S4). Standardized effect size estimates such as Cohen’s d are 

independent of the units or magnitude of CT or SA values.  

We examined three types of rank-ordering of regions to generate 3 network types (see Fig. 1B): 

(i) regions with higher CT in PTSD than non-PTSD were ordered from the largest positive to the 

largest negative effect size were used to construct hypertrophic networks, (ii) regions with 

higher CT in non-PTSD than PTSD were rank-ordered from the largest positive to the largest 

negative effect size were used to construct atrophic networks, and (iii) regions identified by 

comparing CT in PTSD to non-PTSD groups were rank-ordered from smallest to largest effect 

size were used to construct stable networks. The same approach used for CT was repeated for 

SA. An illustration depicting CT-based hypertrophic networks for top-3, top-10 and top-50 

regions are shown in Fig. 1C. 

Pearson correlation coefficients were computed across subjects per group between the CT (or 

SA) estimates for each of pairs of regions with the network. All correlation coefficients were r-to-
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z transformed to improve normality and yielded a unique connectivity matrix for each participant 

group. The resulting matrix quantified the SC, which was interpreted for the present study as a 

measure of the connectivity strength between regions. 

Actual Networks versus Random Networks 

The mean SC (mean of all positive SC values within a network) of an actual network of the top-n 

regions was contrasted (i.e., mathematical subtraction) with the values of mean SC from 5,000 

random networks consisting of n randomly chosen regions. This test was performed for SC 

measured in PTSD and non-PTSD groups, as well as between-group difference in SC. The 

randomly chosen regions were matched to the top-n regions for each value of n, based on the 

number of regions in each hemisphere and the mean Euclidean distance between all possible 

pairs of regions. The Euclidean distance was calculated based on the distance between the 

centers of cortical regions. This approach was conducted by generating 5,000 randomly chosen 

sets of n-regions that were matched on the number of regions per hemisphere. We then 

repeatedly replaced the set of n-regions with the largest or smallest mean distance by a 

randomly generated set of n-regions until the mean distance of the actual regions was not 

significantly different than the mean distance from the set of randomly chosen n-regions (one-

sample t-test thresholded at 5%), or the number of searches exceeded 3,000.  

We conducted replication analyses to test the reliability of our results, performed two tests of 

statistical significance that were complementary to each other – the global test and the 

individual test, and corrected for multiple comparisons using the false discovery rate (FDR) 

method (37). More details please see Supplementary Methods. 
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To test the hypothesis that brain hubs that are strongly connected with other areas (38), play a 

role in the spatial distribution of PTSD-related cortical changes, we investigated the association 

between the effect size of cortical changes for each region and the average of positive SC 

between said region and all the other cortical regions. Details please see Supplementary 

Methods, Supplementary Results, Supplementary Discussion. 

PTSD X Sex Interaction 

To investigate the modulation of sex on PTSD-related SCNs, we first divided PTSD and non-

PTSD groups into male and female subgroups (see Supplementary Table S5). Two-way 

interactions were calculated by first contrasting PTSD (relative to its random networks) to non-

PTSD (relative to its random networks) within each sex subgroup, and then calculating the 

difference between the two contrasts. More detailed comparisons between each pair of 

subgroups were conducted when there was a significant interaction effect between PTSD 

diagnosis and sex.  

PTSD X Age Interaction 

To investigate the modulation effect of depression on PTSD-related SCNs, we first divided 

PTSD and non-PTSD groups into eight decadal subgroups based on age: Age<10, 10≤Age<15, 

15≤Age<20, 20≤Age<30, 30≤Age<40, 40≤Age<50, 50≤Age<60, Age≥60 (see Supplementary 

Table S6). Two-way interactions were calculated by first contrasting PTSD (relative to its 

random networks) to non-PTSD (relative to its random networks) within each age subgroup, and 

then calculating the difference between the two contrasts. More detailed comparisons between 

each pair of subgroups were conducted when there was a significant interaction effect between 

PTSD diagnosis and age.  
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PTSD X Depression Interaction 

To investigate the modulation effect of depression on PTSD-related SCNs, we first divided 

PTSD and non-PTSD groups into subgroups based on depression diagnosis consisting of two 

subgroups: depressed and non-depressed (see Supplementary Table S7). Two-way 

interactions were calculated by first contrasting PTSD (relative to its random networks) to non-

PTSD (relative to its random networks) within each depression subgroup, and then calculating 

the difference between the two contrasts. More detailed comparisons between each pair of 

subgroups were conducted when there was a significant interaction effect between PTSD 

diagnosis and depression.  
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Results 

Effect Size of CT and SA differences 

Effect sizes for between-group differences in CT and SA are shown in Fig. 2 and reported in 

Supplementary Tables S4. Effect sizes ranged from -0.103 (atrophic) to +0.112 (hypertrophic) 

for CT, and from -0.110 (atrophic) to +0.083 (hypertrophic) for SA. 

Top-n Regions SC Analyses 

More detailed results of actual networks versus random networks in PTSD (Fig. 3 and Table 2) 

and in non-PTSD (Fig. 4 and Table 2) are listed in Supplementary Results for the 

methodologic confirmation. 

PTSD versus Non-PTSD. As displayed in Fig. 5 and Table 2, global tests showed that PTSD 

versus non-PTSD participants had lower mean SC in both CT-based (p = 0.014) and SA-based 

(p = 0.024) atrophic networks.  

No significant differences in CT-based (p = 0.098) and SA-based (p > 0.5) hypertrophic 

networks, as well as CT-based (p > 0.5) and SA-based (p > 0.5) stable networks. No individual 

test results survived correction (p-values > 0.05). 

Replication Analyses Results. As shown in Fig. 6, the global-tests results displayed in Figs 3, 4, 

5 and Table 2 are reliable because the AUC of mean SC for the results based on all 29 sites 

were always located within the 95% confidence interval of the AUC of mean SC from 5,000 
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iterations leaving out 3 different sites with each iteration of the analysis across all types of 

networks. 

Only a very small number of the individual-tests results were beyond their 95% confidence 

intervals. They are the CT-based stable network with top-24 regions in the non-PTSD group, the 

SA-based atrophic network with top-11 regions for the PTSD versus non-PTSD comparison, 

and the SA-based hypertrophic networks with top-32, 33, 34, or 35 regions for the PTSD versus 

non-PTSD comparison. 

PTSD x Depression Interaction. As listed in Fig. 7, global tests showed a significant interaction 

effect in CT-based atrophic networks (p = 0.029; Fig. 7A). Further analyses showed that 

participants with depression alone had greater mean SC than the participants with PTSD and 

comorbid depression (p < 0.001), PTSD alone (p < 0.001), and healthy controls (p < 0.001).  

There was a significant interaction effect in SA-based atrophic networks (p = 0.001; Fig. 7B). 

Further analyses showed that participants with PTSD alone had greater mean SC than 

participants with PTSD and comorbid depression (p < 0.001) and healthy controls (p = 0.014). 

Participants with depression alone also had greater mean SC than participants with PTSD and 

comorbid depression (p < 0.001) and healthy controls (p < 0.001).  

There was a significant interaction effect in SA-based hypertrophic networks (p = 0.014; Fig. 

7D). Further analyses showed that PTSD patients with co-morbid depression (p = 0.029) and 

healthy controls (p < 0.001) had greater mean SC than those with depression alone. No other 

global tests (p-values > 0.2) and no individual tests (p-values > 0.05) survived correction. 
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Effects of PTSD x Sex interaction. Global tests showed that females with PTSD (p = 0.029) and 

males without PTSD (p = 0.014) had greater mean SC in CT-based atrophic networks than 

females without PTSD. Males without PTSD had greater mean SC in CT-based stable networks 

than males with PTSD (p = 0.014) and females without PTSD (p < 0.001). No significant PTSD 

x sex interaction effect (global p-values > 0.1) was found in the other types of networks. 

 

Effects of PTSD x Age interaction. An inverted-U relationship between decadal age and mean 

SC was observed in CT-based atrophic networks in both non-PTSD participants, peaking in the 

3rd decade, and PTSD patients, peaking in the 2nd decade, and SA-based hypertrophic networks 

in PTSD patients and non-PTSD patients, both peaking in the 2nd decade. PTSD-related 

differences in mean SC were observed in different age groups, especially in the 1st decade, 

represented by lower mean SC in CT-based atrophic networks (p < 0.001) and SA-based 

hypertrophic networks (p = 0.019), as well as higher mean SC in CT-based hypertrophic (p < 

0.001) and stable (p < 0.001) networks, in patients with PTSD compared to non-PTSD 

participants. 
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Discussion 

We investigated CT-based and SA-based structural covariance networks composed of regions 

with the most atrophic, most hypertrophic, and most stable relationships to PTSD relative to 

trauma-exposed controls. Three network classes were composed of regions selected based on 

the effect size of PTSD-related differences in regional CT and SA. We compared the mean SC 

of these networks to random networks in PTSD and non-PTSD groups, respectively. We also 

investigated the role of PTSD diagnosis and PTSD severity on SC, and interaction effects of 

PTSD with age, sex and depression. We performed methodologic confirmation by 

demonstrating that PTSD and non-PTSD groups had higher SC in CT-based atrophic networks, 

SA-based atrophic networks, and SA-based hypertrophic networks than corresponding random 

networks (Table 2 and Fig. 3, 4). Methodologic confirmation also showed the PTSD group had 

higher SC in CT-based hypertrophic networks and CT-based stable networks than 

corresponding random networks. Of particular interest and consistent with a priori hypotheses, 

we discovered that participants with PTSD had lower SC than trauma-exposed non-PTSD 

participants in CT-based and SA-based atrophic networks (Table 2 and Fig. 5). Furthermore, 

depression alone had higher SC in both CT- and SA-based atrophic networks, and lower SC in 

SA-based hypertrophic networks compared to PTSD with comorbid depression and compared 

to healthy controls (Fig. 7A, B, D). Patients with PTSD alone showed lower SC in CT-based 

atrophic networks than patients with depression alone (Fig. 7A), and higher SC in SA-based 

atrophic networks compared to PTSD with comorbid depression and to healthy controls (Fig. 

7B). 

Our main finding shows that the networks composed of regions having the greatest PTSD-

related atrophy, have significantly lower network covariance in the PTSD group than in the 

trauma-exposed control group. This finding was present for networks derived from both CT and 
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SA. A number of interpretations of this finding are tenable. First, we note a degree of 

consistency between CT-based and SA-based networks in our results concerned with PTSD 

diagnosis. Many cortical regions within networks that are affected by PTSD are strongly 

implicated (by definition) in PTSD such as insula, orbital frontal cortex, anterior cingulate, and 

subcallosal gyrus. However, our present study is not focused on the status of individual regions, 

but rather, in network perturbations associated with PTSD. Of particular note, the functional 

networks previously implicated in PTSD comport with the present structural network findings 

such as in low-level perceptual networks (39), salience network (40), default mode network (41), 

and central executive network (42), also referred to as the fronto-parietal network (43). Our 

finding of structural networks involving medial prefrontal cortex, posterior cingulate cortex (SA-

based only), and angular gyrus, are canonical regions of the default mode network, which is 

also strongly implicated in PTSD. Our finding of structural networks involving anterior cingulate 

cortex, and insular cortex recapitulated salience network differences that have been reported in 

PTSD. However, our structural network findings did not recapitulate prior reports of central 

executive network involvement in PTSD, but the largest meta-analysis of network differences in 

PTSD did not find central executive network involvement (40), either. Unfortunately, there is a 

profound dearth of published findings on structural covariance network differences in PTSD for 

purposes of comparison. It is possible that the cortical networks or network mechanisms that 

propagate PTSD-related structural atrophy are dampened by the disease itself or dampened 

unevenly across brain topography. Alternatively, individuals with weaker connections in atrophic 

networks may be more vulnerable to PTSD. Unfortunately, our cross-sectional study design is 

unable to discern causal factors that contribute to PTSD.  

In addition to functional networks, converging evidence of inflammatory processes, which 

contribute to PTSD, preferentially impact the same regions that constitute atrophic networks we 

identified. The medial prefrontal cortex, insula, and anterior cingulate are all preferentially 
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impacted by inflammatory processes that plague PTSD and other fear- and anxiety-based 

conditions (44). While the amygdala and hippocampus are also affected by inflammatory 

processes, we included only cortical structures, which have a uniquely measurable CT and SA. 

Stress hormones pose pronounced deleterious effects to the medial prefrontal cortex (45) and 

to the orbitofrontal cortex (46), which also featured prominently in the atrophic networks we 

linked to PTSD. Evidence of stress hormone effects on the brain are strongly informed by 

animal models. In humans, frontoparietal connectivity is disrupted after exposure to one month 

of intense academic stress (47). Thus, stress induced changes to medial prefrontal cortex, 

orbital frontal cortex, and frontoparietal regions were present in atrophic networks we linked to 

PTSD. Epigenetic effects on the brain have been linked to intergenerational trauma and its 

effects, particularly on the medial prefrontal cortex (48, 49). Epigenetic regulation of the FKBP5 

gene in response to early trauma is implicated in PTSD pathogenesis (50). The methylation of 

FKBP5 CpG1 of intron 7 is associated with lower gray matter in bilateral orbital frontal gyrus 

(51). Epigenetic regulation at the stress-responsive genes that encode the pituitary adenylate 

cyclase–activating polypeptide (ADCYAP1) and CpG island methylation levels of its receptor 

ADCYAP1R1 predict PTSD symptom severity (50). Thus, inflammation, stress hormones and 

epigenetics, all appear to play a role in SC network difference linked to PTSD.  

The present study extends several facets of earlier SC reports in PTSD. Broadly, the present 

study has three major methodological differences compared to published reports: (i) While we 

focused only on regions at the extremes of between-group differences in constructing networks, 

prior studies have considered all regions in such covariance networks, which compromises 

power compared to the feature reduction strategy we implemented. (ii) Our sample size 

(n=3,400) is 10-fold larger than any previous study (11). (iii) Two prior studies were focused on 

children and adolescents (n=88 and n=120) (12, 52) and a third study focused on remitted 

PTSD in adults (n=317) (11). Thus, the present study is uniquely situated with respect to 
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statistical power, a target population from a broad age-range, and illness chronicity. Our study 

extends the methodology developed by Wannan et al., (26) by investigating CT and SA of 

hypertrophic, atrophic, and stable networks separately rather than considering only the CT of 

atrophic networks. We show that some brain networks, independent of disease, mirror the 

spatial distribution of disease-related changes in cortical morphometry, thus confirming the work 

of Wannan et al. (26). Our results demonstrate for the first time that the SC of three different 

network classes are each uniquely associated with PTSD. We explicitly investigated stable 

networks, which could be summarily dismissed as negative findings since the contributing 

regions have minimal between-group differences. However, negative findings do not necessarily 

indicate that group differences in SC are absent. Negative findings may indicate insufficient 

statistical power. The sample size of the present study provides sufficient power to detect 

extremely small effect sizes, which we may confidently interpret as negative findings that reflect 

networks of stable regions.  

It is important to contrast the interpretation of CT- with SA-based networks. The relationship 

between CT and SA is complex involving myriad factors including brain hemisphere, brain 

region, age, IQ, disease, genetics, and many other factors (33, 53). The large size of the human 

cortex, in comparison to other animals, is driven primarily by expansion of SA, not an increased 

CT (54), and achieved through gyral folding. Individual differences in cortical volume are largely 

attributable to variability in surface area as opposed to cortical thickness (55). While CT and SA 

are highly heritable (rg = 0.81 and 0.89, respectively), the genetic correlation between CT and 

SA is exceedingly low (rg = 0.08). The influence of environment on CT and SA is also relatively 

low, accounting for 20% of their variance (56). Findings from structural MRI of 51,665 

genotyped individuals show that common genetic variants explain greater phenotypic variance 

in SA (8 to 31%) than in CT (1 to 13%). Strikingly, 175 unique genetic loci were associated with 

SA, but only 10 unique loci were associated with CT (57). Understanding the functional roles of 
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these genetic loci will contribute to interpretation of CT-based and SA-based structural 

connectivity, which will help us to understand the genetic contribution of remodeling of cortical 

topography in PTSD. Perhaps identifying common genetic variants that explain CT- and SA- 

based structural connectivity between regions and within networks will provide insights into the 

genetic architecture of the structural connectome (10).  

Patients with depression alone showed higher mean SC in both CT-based and SA-based 

atrophic networks, and lower mean SC in SA-based hypertrophic networks, as compared to 

healthy controls. These results suggest that depression is associated with more coordinated 

propagation of CT and SA reductions, and less coordinated SA increases. Our result is 

consistent with previous reports that depression is associated with widely distributed CT 

reductions (58). Patients with PTSD alone showed lower mean SC in CT-based atrophic 

networks than patients with depression alone, suggesting that PTSD is associated with more 

coordinated decline throughout CT-based networks than depression. We also found that PTSD 

with comorbid depression was associated with lower mean SC in CT-based atrophic networks 

than depression alone, lower mean SC in SA-based atrophic networks compared to PTSD 

alone and depression alone, and higher mean SC in SA-based hypertrophic networks relative to 

depression alone. Previous studies have documented greater volume reductions in cortical 

structures including anterior/middle cingulate cortex, orbitofrontal cortex, and dorsolateral 

prefrontal cortex in PTSD with comorbid depression that are absent in either disorder alone (59). 

Behaviorally, higher levels of distress (60), impaired neurocognitive function (61), and greater 

risk for suicide (62) are present in comorbid PTSD and depression compared to PTSD alone. 

PTSD with comorbid depression, relative to either disorder alone, may be associated with larger 

disruptions of individual cortical regions and their network SC, which may explain greater 

symptom severity. 
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We explored the modulation of PTSD-related differences in SCN by sex and age, and 

modulation of SCNs by PTSD symptom severity. We found that (Supplementary Fig. S1), 

females with PTSD and males without PTSD had greater SC in CT-based atrophic networks 

than females without PTSD. Males without PTSD had greater mean SC in CT-based stable 

networks than males with PTSD and females without PTSD. Diffusion-based structural 

connectome studies in youth show that males have stronger connections between regions for 

perception and coordinated action, whereas females have stronger connections between 

analytical and intuitive processing modes (63), demonstrating the sex-related differences in 

brain connections. We also found (Supplementary Fig. S2) an inverted U-shaped relationship 

between age and SC in CT-based atrophic networks that peaked at 20-30 years in non-PTSD 

and 15-20 years in PTSD, whereas SA-based hypertrophic networks peaked at 10-15 years in 

both groups. We found significant PTSD-related SC differences in some age groups, particularly 

< 10 years, as demonstrated by higher SC in CT-based hypertrophic and stable networks, lower 

SC in CT-based atrophic networks, and lower SC in SA-based hypertrophic networks. Our 

results suggest that multiple networks undergo transformation in a coordinated fashion to 

support the development of the brain as well as PTSD symptoms, particularly during early 

childhood.  A previous longitudinal study in healthy young people (9) showed that similar global 

and nodal topological properties as well as mesoscopic features are shared by SC networks 

and maturation networks, which are based on each region's slope of maturation with age and 

pairwise correlations in the rate of maturation across subjects.  

Strengths and Limitations 

A major strength of our study is a large cohort of over 3,400 participants that represent diverse 

geography, demography (sex, age, race), trauma type (military, sexual violence, natural 

disasters) and clinical comorbidity. This sample heterogeneity enhances the generalizability and 
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reproducibility of our findings. Harmonization of CT and SA measures sourced from 29 

international sites with different MRI scanners was addressed with ComBat (35). A major 

strength our methodology is empirical confirmation that the most atrophic regions, or most 

hypertrophic regions, constitute the networks with the greatest change in SC. The possibility 

that SC might be most affected by PTSD in networks formed of random regions, i.e. where 

PTSD associated changes of individual regions are completely unremarkable, has been robustly 

addressed. 

The following limitations warrant consideration when interpreting the present results. Firstly, our 

study is based on cross-sectional data which lacks longitudinal information to inform 

neurodevelopmental processes. Combining neuroimaging data from multiple longitudinal scans 

on each subject over several years of follow-up, preferably with pre-trauma and post-trauma 

observations, may help us to better understand the developmental changes in SC networks 

among trauma-exposed and PTSD subjects. Secondly, image quality reflected by the Euler 

number was not significantly different between PTSD and non-PTSD groups in most sites 

except for Duke University (DeBellis) and INTRUST. Higher image quality is associated with 

greater CT in dorsolateral prefrontal cortex, superior parietal cortex, and lateral temporal cortex, 

as well as smaller CT in occipital and posterior cingulate cortex (64). Cortical morphometry and 

therefore SC may be biased by the PTSD-related differences in image quality at two sites. 

However, our leave-three-sites-out analyses indicated that our results are reliable. Future 

studies on cortical morphometry and cortico-cortical SCNs should consider including the image 

quality as a covariate in statistical models. Finally, information on illness chronicity, 

developmental timing of trauma, childhood maltreatment, and other comorbidities such as 

anxiety, were unavailable in the datasets shared with us by our Consortium partners. Future 

research comparing trauma-exposed individuals without PTSD to trauma-unexposed individuals 

could offer evidence supporting a hypothetical resilience network. Similarly, differences in 
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patients with remitted PTSD compared to chronic PTSD could support the existence of a 

hypothetical recovery network. Future research could also compare patient groups exhibiting 

specific symptom clusters of PTSD. 

Conclusions 

Cortico-cortical connections shape the topography of PTSD-related differences in cortical 

morphometry. Thus, regional cortical morphometry associated with PTSD, does not occur in 

isolated brain regions and independent of differences seen in other cortical regions. Rather, the 

regions whose morphometry are most affected by PTSD, albeit not significantly, form networks 

whose covariance structure is significantly affected by PTSD diagnosis and symptom severity. 

This finding fundamentally and significantly extends our understanding about the effects of 

PTSD on brain structure. Namely, cortical regions must be viewed from a wholistic standpoint 

as acting within the context of networks that are affected in coordinated manner by PTSD and 

further modulated by comorbid depression, sex, and age. The structural covariance networks 

that are perturbed in PTSD comport with converging evidence from resting state functional 

connectivity networks and networks impacted by stress hormones, inflammation, and 

epigenetics. 
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Figure Legends 

Figure 1. Analyses pipelines. (A) Anatomical neuroimaging data from 29 research sites was 

aggregated by the ENIGMA PGC PTSD working group. Regional estimates of cortical thickness 

(CT) and surface area (SA) extracted from 148 cortical regions based on the Destrieux atlas 

(Destrieux, Fischl, Dale, & Halgren, 2010) were harmonized to remove site effects with ComBat 

approach and entered into a linear model to adjust for effects of age, age2, sex, and whole-brain 

mean CT (or SA). The residuals were used to compute Pearson correlation coefficients for each 

pair of cortical regions across subjects within groups. The correlation coefficients were r-to-z 

transformed to improve normality and yielded a structural covariance (SC) matrix for each 

participant group. The cortical regions were rank ordered according to the magnitude of effect 

size when contrasting CT (or SA) between PTSD and non-PTSD groups. The top-n (n = 2 to 

148) regions with the largest effect size of differences for PTSD > non-PTSD constituted 

atrophic networks, PTSD < non-PTSD constituted hypertrophic networks, while the smallest 

effect size stable networks. The mean SC of a given n-region network measured by the mean of 

positive correlations between all possible pairs of regions were compared to 5,000 randomly 

generated n-region networks matched for hemisphere and distance. Both global and individual 

tests were employed to compute statistical significance based on the proportion of mean SC 

values from randomly chosen sets of n regions that exceeded or equaled the mean SC of the 

actual top-n network. As illustrated in (B), the top-n (n = 5, 10, and 20) regions showed (i) the 

largest effect size in CT (or SA) for PTSD < non-PTSD (atrophic networks); (ii) the largest effect 

size of PTSD > non-PTSD (hypertrophic networks); or (iii) the smallest effect size of PTSD vs. 

non-PTSD (stable networks). (C) CT-based hypertrophic networks for top-3, top-10 and top-50 

regions. 

Figure 2. The top-20 regions showing PTSD-related differences. The top-20 regions that (A) 

PTSD < non-PTSD and (B) PTSD > non-PTSD in cortical thickness. The top-20 regions that (C) 
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PTSD < non-PTSD and (D) PTSD > non-PTSD in surface area. Node size represents the 

magnitude of effect size for between-group differences per region. Warm color denotes PTSD > 

non-PTSD, and cool color denotes PTSD < non-PTSD. Regions names are listed in 

Supplementary Table S4. Two examples are shown on the right to denote the node size and 

the corresponding effect size (Cohen’s d). The directions of the brain maps (axial view) are also 

shown.   

Figure 3. Mean SC of patients with PTSD. Global tests showed that PTSD patients have 

higher mean SC in both CT- (p < 0.001) and SA-based (p = 0.017) atrophic networks, both CT- 

(p = 0.029) and SA-based (p = 0.017) hypertrophic networks, and CT-based (p < 0.001) but not 

SA-based (p > 0.5) stable networks than the corresponding random networks. The curves of 

networks with up to 50 nodes are shown for illustrative purposes, given that the mean SC of 

actual networks and the mean SC of the average of random networks were very similar for large 

network sizes. Red curve, mean SC of the actual networks; Blue curve, mean SC of the 

average of 5,000 random networks; light blue ribbon, 95% confidence interval (CI) of the 5,000 

random networks. 

Figure 4. Mean SC of trauma-exposed participants without PTSD. Global tests showed that 

participants without PTSD had higher mean SC in both CT- (p < 0.001) and SA-based (p < 

0.001) atrophic networks, SA-based (p = 0.014) but not CT-based (p = 0.139) hypertrophic 

networks, and neither CT- (p = 0.264) nor SA-based (p = 0.732) stable networks than in 

corresponding random networks. The curves for networks with up to 50 nodes are shown for 

illustrative purpose, given that the mean SC of actual networks and the mean SC of the average 

of random networks were very similar for large network sizes. Red curve, mean SC of the actual 

networks; Blue curve, mean SC of the average of 5,000 random networks; light blue ribbon, 95% 

confidence interval (CI) of the 5,000 random networks. 
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Figure 5. Mean SC of PTSD vs. non-PTSD. Global tests showed that patients with PTSD 

versus non-PTSD participants had lower mean SC in both CT- (p = 0.014) and SA-based (p = 

0.024) atrophic networks, but no significant difference in CT- (p = 0.098) and SA-based (p > 0.5) 

hypertrophic networks as well as CT- (p > 0.5) and SA-based (p > 0.5) stable networks. The 

curves of networks with up to 50 nodes are shown for illustrative purpose, given that the mean 

SC of actual networks and the mean SC of the average of random networks were very similar 

for large network sizes. Red curve, mean SC of the actual networks; Blue curve, mean SC of 

the average of 5,000 random networks; light blue ribbon, 95% confidence interval (CI) of the 

5,000 random networks. 

Figure 6. Replication analyses results. The global-tests results shown in Figures 3, 4, and 5 

are reliable as underscored by the area under curve (AUC) of mean SC for the results based on 

all 29 sites (represented by the red vertical line) was always located within the 95% confidence 

interval (represented by two blue vertical dashed lines) of the AUC of mean SC from 5,000 

iterations leaving out 3 sites at each iteration across all types of networks. 

Figure 7. Interaction effects of PTSD and depression. Global tests showed that patients with 

depression alone had higher mean SC in (A) CT-based (p < 0.001) and (B) SA-based (p < 

0.001) atrophic networks, and lower mean SC in (D) SA-based hypertrophic networks (p = 

0.029), than patients with both PTSD and depression. Patients with depression alone also 

showed higher mean SC in both (A) CT-based (p < 0.001) and (B) SA-based (p < 0.001) 

atrophic networks, and lower mean SC in (D) SA-based hypertrophic networks (p < 0.001), than 

patients with neither PTSD nor depression. Patients with PTSD alone showed lower mean SC in 

(A) CT-based atrophic networks than patients with depression alone (p < 0.001), and higher 

mean SC in (B) SA-based atrophic networks than patients with both PTSD and depression (p < 

0.001) as well as participants with neither PTSD nor depression (p = 0.014). No significant 

PTSD x depression interaction effect (global p-values > 0.2) was found in the other types of 
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networks shown in (C), (E) and (F). The curves of networks with up to 30 nodes were shown for 

illustrative purposes. Error bar denotes 95% confidence interval of 5,000 random networks. * 

represents p < 0.05; *** represents p < 0.001. 

 

 

Table 1. Demographic and clinical information per site. 

  Number of Participants 

  
  
  
  

Site CT SA 
Male/ 

Female 

PTSD/ 
non-
PTSD 

Age 
(years) 

Trauma 
MDD 
(%) 

Type 

ADNIDOD 194 194 193/1 80/106 69.0±5 Y 2.5 Military 

Booster (AMC) 75 75 40/35 38/37 40.0±10.0 Y 31 Police 

Columbia 88 88 31/57 53/35 36.0±9.8 Y 24 Civilian 

Duke University 
(DeBellis) 

115 117 53/62 29/86 10.0±2.6 Y/N N/A Civilian 

Minneapolis VAMC 169 171 161/8 74/95 33.0±7.9 Y 28.4 Military 

Duke University 
/Durham VA 

385 385 310/75 114/270 40.0±10.0 Y 40.3 Both 

Ghent 67 67 0/67 8/59 37.0±12.0 N 46.3 Civilian 

Groningen (Charité 
Berlin) 

40 40 0/40 40/0 38.0±10.0 Y 67.5 Civilian 

University of 
Wisconsin (Grupe) 

57 58 53/4 19/38 31.0±6.4.0 Y 100 Military 

Emory GTP 174 174 5/169 66/108 38.0±13.0 Y 51.7 Civilian 

INTRUST 373 373 220/145 109/262 35.0±14.0 Y 21.7 Both 

University of 
Wisconsin (Larson) 

67 67 33/34 20/47 33.0±11.0 Y 0 Civilian 

Leiden 52 52 7/45 22/30 15.2±2.0 N 19.2 Civilian 

Mannheim 48 48 0/48 48/0 36.0±12.0 Y 97.9 Civilian 

McLean 52 52 0/52 39/13 38.0±12.0 Y 75 Civilian 

Muenster 47 47 5/42 21/26 27.0±7.0 Y 34 Civilian 

Phan 43 43 43/0 23/20 32.0±8.0 Y 53.5 Military 

McLean (Rosso) 106 97 49/57 21/85 34.0±9.0 Y 23 Civilian 

University of Toledo 76 76 42/34 15/61 35.0±11.3 Y 41 Both 

UCAS 70 70 32/38 34/36 50.0±7.0 Y 64.3 Civilian 

Cape Town 62 63 0/62 7/55 29.0±8.0 Y 50 Civilian 

University of 
Washington 

255 255 125/130 53/202 14.0±3.1 Y 15.3 Civilian 

WACO VA 66 66 56/10 41/25 41.0±11.1 N 67 Military 

WestHaven VA 72 71 63/8 34/40 35.0±10.0 Y 75 Military 

Yale 70 70 59/11 22/48 29.2±9.2 Y 0 Civilian 
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UNSW 162 163 63/99 49/113 40.4±8.0 Y 28.4 Civilian 

South Dakota 123 123 99/24 78/45 29.0±7.0 Y 35 Both 

Stellenbosch 260 260 72/188 121/139 41.0±13.0 Y 0 Civilian 

Stanford 71 71 29/41 70/1 37.0±11.3 Y 0 Civilian 

Total 3438 3436 
1843/ 
1586 

1350/ 
2076 

 -  - 29.9 -  

 

Note: CT = cortical thickness; SA = surface area; Trauma = whether the non-PTSD participants 
are trauma-exposed; MDD (%) = percentage of participants who have major depressive 
disorder; Type = participants are from military/police, civilian, or both units. 

 

Table 2. Area under curve (AUC) of mean SC for the actual network and the average of 5,000 

random networks. 

Network Type CT-based networks SA-based networks 

 

Act. Rand. .95 CI 
Global  

p Act. Rand. .95 CI 
Global  

p 

 
PTSD 

Atrophic 13.975 12.195 [11.918, 12.572] <0.001*** 9.480 8.725 [8.494, 9.126] 0.017* 

Hypertrophic 12.846 12.104 [11.839, 12.512] 0.029* 9.356 8.692 [8.483, 9.061] 0.017* 

Stable 13.211 12.193 [11.938, 12.567] <0.001*** 8.652 8.689 [8.473, 9.049] >0.500 

 

non-PTSD 

Atrophic 14.483 12.397 [12.112, 12.785] <0.001*** 9.616 8.511 [8.286, 8.918] 
<0.001

*** 

Hypertrophic 12.832 12.317 [12.049, 12.729] 0.139 9.050 8.450 [8.242, 8.804] 0.014* 

Stable 11.977 12.260 [11.983, 12.642] 0.264 8.798 8.566 [8.363, 8.890] 0.732 

 

PTSD_versus_non-PTSD 

Atrophic -0.507 -0.205 [-0.382, -0.037] 0.014* -0.136 0.211 [0.052, 0.372] 0.024* 

Hypertrophic 0.015 -0.212 [-0.390, -0.037] 0.098 0.332 0.240 [0.079, 0.403] >0.500 

Stable -0.155 -0.141 [-0.312, 0.033] >0.500 0.172 0.215 [0.062, 0.376] >0.500 

 

Note: Act. = mean SC of the actual network; Rand. = average of the mean SC of 5,000 random 
networks; .95 CI = 95% confidence interval of the mean SC of 5,000 random networks; Global p 
= global p value (Bonferroni corrected) for the actual-versus-random comparison. *, p < 0.05; ***, 
p < 0.001. 
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