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Objective: Dissociative experiences commonly occur in
response to trauma, andwhile their presence strongly affects
treatment approaches in posttraumatic spectrum disorders,
their etiology remains poorly understood and their phe-
nomenology incompletely characterized.Methods to reliably
assess the severity of dissociation symptoms, without relying
solely on self-report, would have tremendous clinical util-
ity. Brain-based measures have the potential to augment
symptom reports, although it remains unclear whether brain-
based measures of dissociation are sufficiently sensitive and
robust to enable individual-level estimation of dissociation
severity based on brain function. The authors sought to test
the robustness and sensitivity of a brain-based measure of
dissociation severity.

Methods: An intrinsic network connectivity analysis was
applied to functional MRI scans obtained from 65 women
with histories of childhood abuse and current posttraumatic
stress disorder (PTSD). The authors tested for continuous
measures of trauma-related dissociation using the Multidi-
mensional Inventory of Dissociation. Connectivity estimates

were derived with a novel machine learning technique using
individually defined homologous functional regions for each
participant.

Results: The models achieved moderate ability to estimate
dissociation, after controlling for childhood traumaandPTSD
severity. Connections that contributed the most to the es-
timation mainly involved the default mode and frontoparietal
control networks. By contrast, all models performed at chance
levels when using a conventional group-based network
parcellation.

Conclusions: Trauma-related dissociative symptoms, dis-
tinct from PTSD and childhood trauma, can be estimated on
the basis of network connectivity. Furthermore, between-
networkbrainconnectivitymayprovideanunbiasedestimate
of symptom severity, paving the way for more objective,
clinically useful biomarkers of dissociation andadvancingour
understanding of its neural mechanisms.
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Exposure to traumatizing events is often followed by dis-
sociative experiences (1), such as amnesia, flashbacks,
numbing, depersonalization, derealization, passive influence
phenomenon, and identity disturbances, suggesting that in
acutely threatening contexts, dissociation often serves a
defensive or coping function (2). It has been proposed that in
the context of recovery from trauma, dissociative experiences
provide psychological distance (3).

And yet long-term predisposition to dissociative experi-
ences canaffect an individual’s ability to function.Dissociation
is a frequent consequence incases of trauma that are especially
severe, chronic, or occurring during key periods of brain de-
velopment when emotional systems are highly sensitive to
experience (4). Consequently, the presence or absence of
dissociative experiences serves as an important indicator of
clinical severity acrossmany posttraumatic syndromes. These

include posttraumatic stress disorder (PTSD) (5) as well as
some syndromes in which dissociation represents a core pa-
thology, such as dissociative identity disorder (6).

Despite the clinical importance of dissociative symptoms
in characterizing posttraumatic syndromes and recent
foundational work beginning to define an associated neu-
robiology (7), there are no objective tests available to cor-
roborate subjective reports of dissociation. This hampers the
ability of individuals experiencing dissociation to receive
appropriate care, including accurate diagnosis, prognosis,
and treatment selection.Moreover, the reliance on subjective
reports has limited our understanding of the neurobiology of
dissociative experiences, since the wide heterogeneity in
whether and how individuals report what they have expe-
rienced may lead to high levels of unexplained within-class
variance.
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Addressing this issue by developing methods to corrob-
orate reports of severe dissociationwould therefore advance
the field substantially, leading to a better understanding of
the biological underpinnings of dissociation and possibly
new avenues for treatment. Brain-based methods for ob-
jective symptom corroboration are attractive as symp-
tom biomarkers because they do not rely on any outward
manifestation of symptoms or physiology, which could in
principle be obscured by an individual aware of those
manifestations.

Many studies have documented evidence of brain changes
associated with a predisposition to dissociative experiences.
For instance, evidence fromseed-based connectivity analyses
while participantswith PTSDand its dissociative subtype are
at rest suggests entrenched patterns of emotion and arousal
overmodulation indepersonalization andderealization (8, 9),
that is, cortical overmodulation of limbic structures domi-
natesprocessing.Evidence from individualswithdissociative
identity disorder demonstrates neurobiological patterns
similar to those seen in the dissociative subtype of PTSD
when individuals with dissociative identity disorder are in a
numb and detached state (10). Reinders and colleagues (11)
have also successfully used machine learning to distinguish
between individuals with dissociative identity disorder and
healthy control subjects based on their brain morphology.
Together this work indicates that the subjective experience
of dissociation is associated with measurable brain differences
at the group level and structural brain differences at the
individual level; however, whether or not these changes are
sufficiently sensitive and robust to allow for individual-level
estimation of dissociation severity based on brain function
has not yet, to our knowledge, been tested. In aggregate,
these studies indicate that it may be possible to develop
methods based on changes in brain structure and function
to support current or recently reported dissociative expe-
riences, providing at least a path toward a stable symptom
biomarker.

To address this gap and determine the extent to which
a noninvasive, brain-derived biomarker based on cortical
network connectivity could provide an objective means to
corroborate a report of dissociation, we conducted a cross-
sectional observational study of women receiving care for
posttraumatic psychopathology, each manifesting a dif-
ferent severity of dissociative symptoms, using an extended
functional MRI (fMRI) protocol. To determine whether
these fMRI data were sufficient to estimate individual-level
dissociation severity, we employed a novel machine-learning
approach using individual participant brain connectivity
measures (12). We employed a brain connectivity analysis
approach in which cortical functional boundaries are de-
fined at the individual level, prior to assessing connectivity
between regions. This approach has demonstrated sub-
stantial improvements in the sensitivity and specificity of
connectivity-based symptom estimation in diverse symptom
domains, including obsessive-compulsive disorder, schizophre-
nia spectrum disorders, and bipolar disorder (13, 14).

METHODS

Participants
Participants were 75 women seeking inpatient, partial, res-
idential, or outpatient treatment at a psychiatric hospital in
the northeastern United States. All participants had a history
of interpersonal childhoodmaltreatment, current PTSD, and
various levels of dissociative symptoms, including somewith
co-occurring dissociative identity disorder.

Participants were excluded if they had any absolute or
relative standard contraindications to MRI. Other exclusion
criteria included a history of neurological conditions, history
of head injury resulting in a loss of consciousness for longer
than 5 minutes, a current alcohol or substance use disorder
within the past month, and a history of psychotic spectrum
disorders. Data from 65 participants were retained for sub-
sequent analysis after application of these exclusion criteria
and imaging quality control, described below. These partic-
ipants’ demographic and clinical characteristics are sum-
marized in Table 1. The Massachusetts General Brigham
Human Research Affairs Institutional Review Board ap-
proved all procedures, which were performed in accordance
with human subject guidelines and regulations. All partici-
pants provided written informed consent after treating cli-
nicians had assessed the participant’s clinical competence to
provide informed consent.

Diagnostic and Symptom Measures
The Clinician-Administered PTSD Scale for DSM-5 (CAPS-
5) (15) was used to diagnose PTSD, and the Structured
Clinical Interview for DSM-IV Dissociative Disorders (16)
was used to diagnose dissociative disorders. The CAPS-5 total
PTSD symptom severity score was also used to control for
PTSD symptom severity in our models. This score is a
measure of PTSD severity across all symptom domains, and
ranges from 0 to 100. In our sample, the CAPS-5 total
symptom severity score displayed good internal consistency
(Cronbach’s alpha=0.83).

Our primarymeasure of interestwas theMultidimensional
Inventory of Dissociation (17), a comprehensive self-report
instrument ofpathological dissociative symptoms.We focused
on predicting the instrument’s severe dissociation score in our
model. This score is an indication of how many of the disso-
ciative symptom items reach clinical levels of significance.
Scores range from 0 to 168. In our sample, the Multidimen-
sional Inventory of Dissociation displayed excellent internal
consistency (Cronbach’s alpha=0.99). Additionally, we used
the Childhood Trauma Questionnaire (CTQ) (18) to evaluate
the frequencyof childhoodmaltreatment.TheCTQtotal score
ranges from 25 to 125. In our sample, the CTQ displayed ex-
cellent internal consistency (Cronbach’s alpha=0.94).

Neuroimaging Procedures
MRI scanning was performed in a 3-T Tim Trio scanner
(Siemens Healthcare, Erlangen, Germany) using the vendor-
supplied 12-channel phased-array head coil and standard
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T2*-weighted echo-planar imaging (TR=3000ms, TE=30ms,
flip angle=85°, 33333 mm voxels) for blood-oxygen-level-
dependent (BOLD) fMRI. Participants performed a series of
tasks during BOLD imaging: a multisource interference task
(396 seconds) (19), a masked faces task (450 seconds) (20),
and a “rest” task, during which participants were instructed
to lie still with their eyes open (372 seconds).

Imaging Data Preprocessing and Analysis
Resting-state and task-based fMRIdatawereprocessed in the
sameway, usingproceduresdescribedelsewhere (21). Briefly,
processing included discarding the first four volumes, slice
timing correction, motion correction, bandpass filtering,
motion regression, whole brain signal regression, and ven-
tricular and white matter regression. The data of different
tasks (including the “rest” task) were concatenated within
each subject to increase the amount and reliability of data per
subject. Subjects with head motion greater than 0.2 mm and
temporal signal-to-noise ratio ,100 were excluded from
further analyses. Functional regions of interest were local-
ized in each individual. First, a fine-grained and population-
level parcellation with 92 regions of interest (see Figure S1A
in the online supplement) across thewhole brainwas created
on the basis of a sample of 1,000 subjects from the Genomic
Superstruct Project (22). Briefly, we split the cerebral cortex
into five lobes—frontal, parietal, temporal, occipital, and
motor lobes—according to the Desikan-Killiany atlas (23),
and then applied a k-means clustering approach to segment
each lobe into multiple subareas based on the functional
connectivity profile. The functional connectivity profile was
estimated as Pearson’s correlation between the time series of
each vertex and the other 1,175 vertices, which were uni-
formly sampled in FreeSurfer fsaverage6 space. Second, we
applied our previously reported iterative parcellation strat-
egy to derive an individual-level parcellation of each lobe (for
more details, see references 12, 24). Using this procedure, a
total of 92 individualized homologous functional regions of
interest were localized in the 65 participants in our data set.
These functional regionsof interestdemonstrated substantial
interindividual variability in size and position across indi-
viduals (see Figure S1B in the online supplement).

Next, we estimated symptom-connectivity associations
(12, 13). In summary, we derived connectivity estimates by
individually defining homologous functional nodes (i.e., re-
gions) for each participant and then computed edge weights
across the entire cortical connectivity matrix. Subsequently,
a support vector machine for regression (SVR) algorithm
(L2-regularized L2-loss SVR model with default param-
eters) implemented in the LIBLINEAR package (https://
www.csie.ntu.edu.tw/;cjlin/liblinear/)wasused toestimate
participants’ Multidimensional Inventory of Dissociation
severe dissociation scores, using a leave-one-subject-out
cross-validation (LOOCV) approach. Features that were
significantly (p,0.01 or p,0.005) correlated with the
Multidimensional Inventory of Dissociation severe dissoci-
ation scores were selected to train the SVR model in each

LOOCV. Importantly, covariates including motion, age,
childhood trauma severity, andPTSD symptom severitywere
regressed from both the brain features and the measured
severe dissociative symptom scores. This approach yields the
optimal combination of brain network edges that can be
associated with symptom scores, if such a solution exists for
the desired outcome measure.

As mentioned above, individualized functional regions
demonstrated marked intersubject variability in size, which
can be related to individual differences in behavior (12,
25–27).We further trained the SVRmodel described above to
investigate whether the size of the functional regions was
related to the severe dissociative symptom scores.

Permutation testing was performed to create a distribu-
tion of random SVR models to determine whether the pre-
diction of severe dissociative symptom scores exceeded
chance levels. Themeasured symptom scoreswere randomly
reshuffled 1,000 times among the subjects, and theprediction
procedures were repeated each time. The permutation p
value was calculated as the percentage of permutations that
yielded a prediction-measured correlation value higher than
the prediction-measured correlation based on the real data.
Weights/contributionsof the features (functional connection
or size of functional regions) in thepredictionwere estimated
as the absolute value of the regression coefficients of cor-
responding features in the SVR model. Selected functional

TABLE 1. Clinical and neuroimaging quality control measures for
participants in a study of functional brain network architecture
changes associated with trauma-related dissociation (N=65)a

Measure

N %

Diagnosis
Classic PTSD diagnosis only 18 28
PTSD dissociative subtype

diagnosis only
15 23

Dissociative identity disorder
diagnosisb

32 49

Female 65 100
Right-handed 56 86
Level of care
Inpatient 21 32
Partial/residential 32 49
Outpatient 12 18

Mean SD

Age (years) 34.37 12.21
CAPS-5 overall PTSD severity
score

50.83 11.89

Childhood TraumaQuestionnaire
total score

77.45 21.73

Multidimensional Inventory
of Dissociation severe
dissociation score

87.46 41.28

Head motion (mm) 0.07 0.04

a CAPS-5=Clinician-Administered PTSD Scale for DSM-5; PTSD=post-
traumatic stress disorder.

b All individuals with dissociative identity disorder also met criteria for the
dissociative subtype of PTSD, although this is not captured in the table.
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connections varied slightly within each LOOCV. Because of
this variation, we only displayed “consensus features” in our
figures. Consensus features were those that were common to
LOOCVs as important features for severe dissociation score
prediction.

Finally, the prediction analyses based on individualized
functional connectivity were repeated using k-fold cross-
validation with the traditionally suggested fivefold model.
Specifically, we trained the model using 80% of the subjects
and tested the model in the remaining 20% of the subjects.
The cross-validation was repeated 100 times, and the mean
predictionaccuracy r, r-squared, andmeansquarederror (i.e.,
how much predicted values deviate from true values) were
reported to estimate the prediction performance.

RESULTS

Individually Specified Functional Connectome Tracks
of Severe Dissociation Symptoms
To determine whether individually specified functional
connectivity tracked with the severe dissociation scores, we
trained SVR models to estimate the Multidimensional In-
ventory ofDissociation severedissociation score fromeachof
the individual participants. We found that the severe dis-
sociative symptom score was robustly estimated by a set of
functional connections, with a significant correlation be-
tween estimated and observed scores among the 65 patients
(Figure 1A) (r=0.496, p=0.004, 1,000 permutation tests). We
further calculated the partial correlation between the pre-
dicted and observed symptoms, while controlling for head
motion. We found that controlling for head motion had al-
most no effect on the correlations (Pearson’s correlation,
r=0.479, p,0.001; see Figures S1 and S2 in the online sup-
plement for further covariate explorations). Depending on
the LOOCV model, the feature number contributing to the
estimation of severe dissociation scores ranged from 30 to 43.
Connections that contributedmost to theestimationof severe
dissociation scoresmainly involved the frontoparietal control
network and default mode network (Figure 1B).

For comparison, the SVR analysis was repeated using
functional connectivity among the corresponding functional
regions identified in the group-level atlas (21) (see Figure
S3A in the online supplement). The correlation between
the predicted and observed Multidimensional Inventory of
Dissociation severe dissociation score was greatly reduced
(p,0.006, z=2.52, Steiger’s z test; prediction accuracy
r=0.308, p=0.084, 1,000 permutation tests) (Figure 1C). The
number of features contributing to the severe dissociation
estimation ranged from 33 to 52, depending on the LOOCV
model. The most predictive connections from the atlas again
involved the frontoparietal control and default mode net-
works, although the prediction was weaker (Figure 1D). We
repeated the analysis using another prominent group-level
atlas (28), which consisted of 360 regions, and this analysis
tended to yield similar results (p=0.049, z=1.65, Steiger’s z
test; prediction accuracy r=0.351, p=0.003 permutation test).

Importantly,we found that the connectionsdefinedbygroup-
level regions were less correlated with symptom scores
(Figure 2) (p,0.001, t=8.82, paired t test) compared with the
same connections defined by individualized regions. This
indicated that the symptom-related connections were ob-
scured by the group-level atlas, impairing the prediction of
symptoms.

As a final step, we repeated the prediction analysis based
on the individual-specified connectivity using fivefold cross-
validation and found that our findings were robust. We
showed that individually defined regions are superior across
different objective indices and cross-validations (seeTable S1
in the online supplement).

Estimating Within-Network and Between-Network
Functional Connectivity
Functional connections were separated into within-network
and between-network connections according to whether
they connected two regions in the same network or different
networks (Figure 3). Within-network and between-network
connectivity values were estimated for each participant. To
compute the within-network connectivity of a specific net-
work, we averaged the connectivity values of all region pairs
within the network. To compute the between-network
connectivity of a specific network, we averaged the con-
nectivity values of all region pairs that involved a region
within the network and a region outside the network. We
found that the connections contributing to the symptom
estimation were mostly between-network connections that
involved the visual, frontoparietal control, and default mode
networks (Figure 3A). Figure S4 in the online supplement
presents theweight distribution for both between andwithin
networks divided by positive and negative direction.

We then investigated how between-network connectivity
was changed by the subject-specific functional regions and
found that the absolute values of between-network con-
nections were significantly reduced (average decrease of
5.15%) when regions of interest were individually specified
compared with atlas defined (Figure 3B). Intriguingly, al-
though the absolute values of between-network connectivity
were significantly reduced, they yielded better symptom
estimates, suggesting that between-network connectivity
may be more accurately quantified when functional regions
are localized in individuals.

Complementary Information From Size and Functional
Connectivity of the Individually Specified Regions
of Interest for Predicting Severe Dissociative
Symptom Scores
Functional connectivity studies have mostly focused on
connectivity strength among brain regions, but rarely on the
topography of the functional regions because no variable size
was provided by atlas regions. Here, we examined whether
the size of the individualized functional regions is behav-
iorally relevant. We found that the size of the individualized
regions was predictive of symptom scores (r=0.442, p=0.018,
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permutation test) (Figure 4A). Specifically, we observed a
mild negative correlation (r=20.277, p=0.031) between
Multidimensional Inventory of Dissociation score and size of
the ventral attention network but a positive correlation

between Multidimensional Inventory of Dissociation score
and size of the somatomotor network (r=0.271, p=0.035). The
results indicate that the size of the functional regions pro-
vides useful information for the prediction of symptom

FIGURE 1. Predicting dissociation scores using functional connectivity among the individually specified regions and connectivity among
the atlas-based regionsa
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scores. To further determine whether the size of the func-
tional regions provides nonredundant information for
functional connectivity in the prediction of symptom scores,
we repeated the SVR analysis using features from the com-
bination of region size and functional connections.We found
that the severe dissociative symptom scores were better
predicted in a combined model including region size and
functional connections compared with either one of the
single features by themselves (r=0.549, p,0.001, permuta-
tion test) (Figure 4B).

DISCUSSION

Despite foundational work on the neural basis for trauma-
relateddissociation, thefieldhas yet to produce a clinical test,
brain-based or otherwise, to corroborate subjective symptom
reports andprovide anobjective assaydocumentingpresence
of or predisposition to severe dissociative symptoms. In the
presentwork,wesetout todiscoverwhetheramappingexists
between abnormalities in large-scale brain network con-
nectivity and patterns of dissociative experiences that can be
discriminated from patterns associated with experiencing
other common posttraumatic symptoms (e.g., hyperarousal,
nightmares). We used a measure of severe pathological

dissociation to characterize tendency toward severe disso-
ciation and testedwhetherwecould estimate this score at the
individual level from weighted, individualized functional
connectivity estimates, after controlling for motion, age,
childhood trauma, and PTSD symptom severity. We dem-
onstrated that our models successfully predicted severe
dissociative symptom scores, well above chance levels. Be-
cause our model controlled for childhood trauma and PTSD
symptom severity, this suggests that trauma-related disso-
ciation has neurobiological substrates that are distinct from
PTSD and childhood trauma load.

Patterns of Network Connectivity Driving the Model
Machine learning is a technique used to produce prediction
models, and it does not necessarily follow that highweights in
our model mean that those network connections are more
important fordissociation; instead, ahighweight in themodel
meansonly that this connection is important in the regression
model. Therefore, the main conclusion from our work is that
aberrant network connectivity is associatedwith dissociative
symptom estimation in our model.

Although this method is not intended to make statistical
inferences about the biology of dissociation, it is nonetheless
worth speculating that perhaps dissociative experiences are
dependent on connections between regions in the default
mode and frontoparietal control networks. The default mode
network facilitates internally oriented attention often com-
prising past and future thinking and emotional and self-
referential processing (29, 30). The frontoparietal control
network is involved in problem solving, working memory–
related tasks, anddecisionmaking (31). There is also evidence
to suggest that the frontoparietal control network pairs with
the default mode network to facilitate internally oriented,
goal-directed cognition, that is, problem solving to accom-
plish one’s goals (32). While it is speculative that these
networks are more important to dissociation, our results
suggest that various regions in the frontoparietal control and
defaultmodenetworks aremore likely tobeactive at the same
time, the more severe the dissociative symptoms. This result
may imply a dominance of internally oriented goal-directed
cognition in individuals with high levels of dissociation.
Given histories of interpersonal childhood abuse, individuals
may have learned early on to rely on internal problem solving
because caregivers were unreliable.

Limitations
Our interpretations are constrained by several important
limitations. Participants were taking various forms of psy-
chiatric medication, which our sample was insufficiently
powered to address. Also, while we validated the main
findings using fivefold cross-validation, we did not replicate
our findings in an independent data set. This may affect the
generalizability of ourfindings. Finally, in this cross-sectional
study, we did not attempt to resolve whether brain con-
nectivity changes associated with a predisposition to disso-
ciative experiences is a trait-like or state-like effect. We also

FIGURE 2. Correlations between dissociation scores and
functional connectivity among the individually specified and
atlas-based regionsa
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by paired t test.
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did not measure state dissociation in the scanner. Thus,
it remains unclear whether individuals who experience
changes in or recover from the severity of dissociation (e.g.,
with treatment) would manifest changes in the relevant
functional connections we identified here. Future work will
seek to address this issue and other related potential clinical
confounders by following individuals longitudinally to ob-
serve how the neural systems affected by complex disso-
ciative disorders may respond to treatment, potentially
revealing new therapeutic targets as well as advancing our
understanding of the basic neurobiology underlying recovery
from trauma.

Clinical Implications and Significance
Our work has contributed to the growing body of literature
demonstrating a brain basis for trauma-related dissociation.
Biological evidence is particularly compelling regarding the
legitimacy of psychiatric symptoms. Increased awareness
and acceptance of dissociative symptoms may motivate pa-
tients to seek assessment and care, medical practitioners to

provide adequate care, and insurance providers to cover
treatment. Better understanding of the biological correlates
of trauma-related dissociation may also inform treatment
approaches and the identification of psychopharmacological
targets for further research.

A further potential use for capturing brain-based mea-
sures of dissociation, rather than assessing these symptoms
with a self-report measure, is in assessments in individuals
who are unable to effectively use the self-report (e.g., they
unconsciously or consciously minimize or exaggerate their
symptoms) or in situations where objective corroborating
evidence is requested (e.g., court proceedings). Our work
represents a first step toward buildingmodels of dissociation
that could be used in these ways.

Finally, recent researchdemonstrates that one can reliably
identify individual differences in mental health issues from
unique patterns of functional brain connectivity—similar to a
fingerprint (33). Our work represents a foundational step
toward building a functional connectivityfingerprint of trauma-
related dissociation that may eventually contribute to improved

FIGURE 3. Between-network and within-network connectivity involved in the prediction modela
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diagnostic and biomarker tools to better understand the
neural activity of people with these symptoms and assess the
effects of treatment on an individual basis.
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region size: r=0.549; connectivity: r=0.496; region size: r=0.442). The scatterplot demonstrates the correlation between the predicted and observed
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